二次函数的四种类型
一般式:
y=ax2+bx+c(a、b、c是常数,a不等于0)
已知抛物线上任意三点的坐标可求函数解析式 。
顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数) 。顶点坐标为(h,k);对称轴为直线x=h;顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k 。有时题目会指出让你用配方法把一般式化成顶点式 。
交点式(两根式):
[仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] 。
已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a 。
对称点式:
【二次函数的四种类型】若已知二次函数图象上的两个对称点(x1、m)(x2、m),则设成:y=a(x-x1)(x-x2)+m(a≠0),再将另一个坐标代入式子中,求出a的值,再化成一般形式即可 。
推荐阅读
- 蒋雯丽倪大红主演的电视剧是哪部
- 极必反∽什么的成语
- 夏季正确涂抹护肤防晒霜的方法
- 你的肠道清理了吗? 关于人体宿便的真相
- 因风飞过蔷薇的上一句是什么
- 5乘7的床单是多大
- 山芋有哪些吃法?山芋的做法
- 跑车使用的炭纤维有什么特性
- 好听的两个字的昵称女 好听的两个字网名大全
- 好听的英文昵称男 好听的英文昵称男 怎么取