开关模式电源基础知识

为何使用开关模式电源?
显然是高效率 。在SMPS中,晶体管在开关模式而非线性模式下运行 。这意味着,当晶体管导通并传导电流时,电源路径上的压降 。当晶体管关断并阻止高电压时,电源路径中几乎没有电流 。因此,半导体晶体管就像一个理想的开关 。晶体管中的功率损耗可减至 。高效率、低功耗和高功率密度(小尺寸)是设计人员使用SMPS而不是线性稳压器或LDO的主要原因,特别是在高电流应用中 。例如,如今12VIN、3.3VOUT开关模式同步降压电源通常可实现90%以上的效率,而线性稳压器的效率不到27.5% 。这意味着功率损耗或尺寸至少减小了8倍 。
  常用的开关电源——降压转换器
图8显示  简单、  常用的开关稳压器——降压型DC/DC转换器 。它有两种操作模式,具体取决于晶体管Q1是开启还是关闭 。为了简化讨论,假定所有电源设备都是理想设备 。当开关(晶体管)Q1开启时,开关节点电压VSW = VIN,电感L电流由(VIN – VO)充电 。图8(a)显示此电感充电模式下的等效电路 。当开关Q1关闭时,电感电流通过续流二极管D1,如图8(b)所示 。开关节点电压VSW = 0V,电感L电流由VO负载放电 。由于理想电感在稳态下不可能有直流电压,平均输出电压VO可通过以下公式算出:

 图8.降压转换器操作模式和典型波形
其中TON是开关周期TS内的导通时间间隔 。如果TON/TS之比定义为占空比D,则输出电压VO为:
当滤波器电感L和输出电容CO的值足够高时,输出电压VO为只有1mV纹波的直流电压 。在这种情况下,对于12V输入降压电源,从概念上讲,27.5%的占空比提供3.3V输出电压 。
除了上面的平均法,还有一种方式可推导出占空比公式 。理想电感在稳态下不可能有直流电压 。因此,必须在开关周期内保持电感的伏秒平衡 。根据图8中的电感电压波形,伏秒平衡需要:
因此,VO = VIN ? D(5)
公式(5)与公式(3)相同 。这个伏秒平衡法也可用于其他DC/DC拓扑,以推导出占空比与VIN和VO的关系式 。
降压转换器中的功率损耗
直流传导损耗
采用理想组件(导通状态下零压降和零开关损耗)时,理想降压转换器的效率为100% 。而实际上,功耗始终与每个功率元件相关联 。SMPS中有两种类型的损耗:直流传导损耗和交流开关损耗 。
降压转换器的传导损耗主要来自于晶体管Q1、二极管D1和电感L在传导电流时产生的压降 。为了简化讨论,在下面的传导损耗计算中忽略电感电流的交流纹波 。如果MOSFET用作功率晶体管,MOSFET的传导损耗等于IO2 ? RDS(ON) ? D,其中RDS(ON)是MOSFET Q1的导通电阻 。二极管的传导功率损耗等于IO ? VD ? (1 – D),其中VD是二极管D1的正向压降 。电感的传导损耗等于IO2 ? R DCR,其中R DCR是电感绕组的铜电阻 。因此,降压转换器的传导损耗约为:
例如,12V输入、3.3V/10AMAX输出降压电源可使用以下元件:MOSFET RDS(ON) = 10mΩ,电感RDCR = 2 mΩ,二极管正向电压VD = 0.5V 。因此,满负载下的传导损耗为:
如果只考虑传导损耗,转换器效率为:
上述分析显示,续流二极管的功率损耗为3.62W,远高于MOSFET Q1和电感L的传导损耗 。为进一步提高效率,ADI公司建议可将二极管D1替换为MOSFET Q2,如图9所示 。该转换器称为同步降压转换器 。Q2的栅极需要对Q1栅极进行信号互补,即Q2仅在Q1关断时导通 。同步降压转换器的传导损耗为:
图9.同步降压转换器及其晶体管栅极信号
如果10mΩ RDS(ON) MOSFET也用于Q2,同步降压转换器的传导损耗和效率为:
上面的示例显示,同步降压转换器比传统降压转换器更高效,特别适用于占空比小、二极管D1的传导时间长的低输出电压应用 。
交流开关损耗
除直流传导损耗外,还有因使用不理想功率元件导致的其他交流/开关相关功率损耗:
1.  MOSFET开关损耗 。真实的晶体管需要时间来导通或关断 。因此,在导通和关断瞬变过程中存在电压和电流重叠,从而产生交流开关损耗 。图10显示同步降压转换器中MOSFET Q1的典型开关波形 。顶部FET Q1的寄生电容CGD的充电和放电及电荷QGD决定大部分Q1开关时间和相关损耗 。在同步降压转换器中,底部FET Q2开关损耗很小,因为Q2总是在体二极管传导后导通,在体二极管传导前关断,而体二极管上的压降很低 。但是,Q2的体二极管反向恢复电荷也可能增加顶部FET Q1的开关损耗,并产生开关电压响铃和EMI噪声 。公式(12)显示,控制FET Q1开关损耗与转换器开关频率fS成正比 。  计算Q1的能量损耗EON和EOFF并不简单,具体可参见MOSFET供应商的应用笔记 。
【不支持emf图片】
图10.降压转换器中顶部FET Q1的典型开关波形和损耗
2.  电感铁损PSW_CORE 。真实的电感也有与开关频率相关的交流损耗 。电感交流损耗主要来自磁芯损耗 。在高频SMPS中,磁芯材料可能是铁粉芯或铁氧体 。一般而言,铁粉芯微饱和,但铁损高,而铁氧体材料剧烈饱和,但铁损低 。铁氧体是一种类似陶瓷的铁磁材料,其晶体结构由氧化铁与锰或氧化锌的混合物组成 。铁损的主要原因是磁滞损耗 。磁芯或电感制造商通常为电源设计人员提供铁损数据,以估计交流电感损耗 。
3.  其他交流相关损耗 。其他交流相关损耗包括栅极驱动器损耗PSW_GATE(等于VDRV ? QG ? fS)和死区时间(顶部FET Q1和底部FET Q2均关断时)体二极管传导损耗(等于(ΔTON + ΔTOFF) ? VD(Q2) ? fS) 。
总而言之,开关相关损耗包括:
【开关模式电源基础知识】【不支持emf图片】
通常,计算开关相关损耗并不简单 。开关相关损耗与开关频率fS成正比 。在12VIN、3.3VO/10AMAX同步降压转换器中,200kHz – 500kHz开关频率下的交流损耗约导致2%至5%的效率损失 。因此,满负载下的总效率约为93%,比LR或LDO电源要好得多 。可以减少将近10倍的热量或尺寸 。


    推荐阅读