如何解一元二次方程,k个k相加的n次方等于什么( 三 )
根 。 这种解一元二次方程的方法叫做因式分解法 。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解 。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解 。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解 。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解 。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ?6?12 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解 。
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般
形式,同时应使二次项系数化为正数 。
直接开平方法是最基本的方法 。
公式法和配方法是最重要的方法 。 公式法适用于任何一元二次方程(有人称之为万能法),在使用公式
法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程
是否有解 。
一元二次方程如何解 方法 1.配方法(可解全部一元二次方程)
2.公式法(可解全部一元二次方程)
3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法” 。
4.开方法(可解全部一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)
如何选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑公式法,最后考虑十字相乘法);
3、使用公式法求解;
4、除非题目要求,最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是解题步骤太麻烦) 。
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视 。
一元二次方程的一般形式为:ax^2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程 。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程 。 一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法 。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法 。 用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±√n
例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解 。
(1)解:(3x+1)^2=7
∴(3x+1)^2=7
∴3x+1=±√7(注意不要丢解)
∴x= ...
∴原方程的解为x1=...,x2= ...
(2)解: 9x^2-24x+16=11
∴(3x-4)^2=11
∴3x-4=±√11
∴x= ...
∴原方程的解为x1=...,x2= ...
2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
先将固定数c移到方程右边:ax^2+bx=-c
推荐阅读
- 如何预防脑溢血,脑溢血怎样避免
- 如何查看ie浏览器版本,IE网页打不开缺少标识符
- 如何炼猪油,熬猪油要解冻吗
- 如何讲好一堂课,姚小玲如何讲好一堂课心得
- 如何拒绝朋友借钱,一个人反反复复的借钱
- 如何吃百香果,百香果的副作用及禁忌
- 如何避免愚蠢的见识,如何避免愚蠢的见识唯一方法
- 如何进行股权激励,中长期股权激励办法
- 如何做辣椒油,5斤辣椒能盐出几咸辣椒
- 如何把梳子卖给和尚,把梳子卖给和尚的答案